
[ad_1]
In discrete mathematics, a graph is a collection of points, called vertices, and lines between those points, called edges. There are many different types of graphs, such as connected and disconnected graphs, bipartite graphs, weighted graphs, directed and undirected graphs, and simple graphs.
In discrete mathematics, a graph is a collection of points, called vertices, and lines between those points, called edges. There are many different types of graphs, such as connected and disconnected graphs, bipartite graphs, weighted graphs, directed and undirected graphs, and simple graphs.
In math, a graph can be defined as a pictorial representation or a diagram that represents data or values in an organized manner. The points on the graph often represent the relationship between two or more things.
The four most common are probably line graphs, bar graphs and histograms, pie charts, and Cartesian graphs. They are generally used for, and are best for, quite different things.
Three commonly used types of graphs are bar graphs, circle graphs, and line graphs. Each type of graph is suitable for showing a different type of data.
Line graphs, bar graphs, pie charts, scatter plots, and histograms are all common graph types. Graphs are an excellent tool for visualizing data and presenting statistics. A bar graph or chart, for example, is used to depict numerical data that is unrelated to one another.
What is a graph? A graph is a visual representation of numerical data. Graphs provide a visual way to summarize complex data and to show the relationship between different variables or sets of data. Graphs are also an excellent way to demonstrate trends and relationships within the data.
A graph is a mathematical structure consisting of a set of points called VERTICES and a set (possibly empty) of lines linking some pair of vertices. It is possible for the edges to oriented; i.e. to be directed edges. The lines are called EDGES if they are undirected, and or ARCS if they are directed.
graph, pictorial representation of statistical data or of a functional relationship between variables. Graphs have the advantage of showing general tendencies in the quantitative behaviour of data, and therefore serve a predictive function.
The four basic graphs used in statistics include bar, line, histogram and pie charts.
Graphs are a common method to visually illustrate relationships in the data. The purpose of a graph is to present data that are too numerous or complicated to be described adequately in the text and in less space. Do not, however, use graphs for small amounts of data that could be conveyed succinctly in a sentence.
There are eight different types of functions that are commonly used, therefore eight different types of graphs of functions. These types of function graphs are linear, power, quadratic, polynomial, rational, exponential, logarithmic, and sinusoidal.
Here we will learn about types of graphs, including straight line graphs, quadratic graphs, cubic graphs, reciprocal graphs, exponential graphs and circle graphs.
The following pages describe the different parts of a line graph.
- The Title. The title offers a short explanation of what is in your graph. …
- The Legend. The legend tells what each line represents. …
- The Source. The source explains where you found the information that is in your graph. …
- Y-Axis. …
- The Data. …
- X-Axis.
Constant Function: The polynomial function of degree zero. Linear Function: The polynomial function of degree one. Quadratic Function: The polynomial function of degree two. Cubic Function: The polynomial function of degree three.
A graph can be represented using 3 data structures- adjacency matrix, adjacency list and adjacency set. An adjacency matrix can be thought of as a table with rows and columns. The row labels and column labels represent the nodes of a graph.
Bar charts are good for comparisons, while line charts work better for trends. Scatter plot charts are good for relationships and distributions, but pie charts should be used only for simple compositions — never for comparisons or distributions.
To properly label a graph, you should identify which variable the x-axis and y-axis each represent. Don’t forget to include units of measure (called scale) so readers can understand each quantity represented by those axes. Finally, add a title to the graph, usually in the form “y-axis variable vs. x-axis variable.”
To better understand these chart types and how you can use them, here’s an overview of each:
- Column Chart. Use a column chart to show a comparison among different items or to show a comparison of items over time. …
- Dual-Axis Chart. …
- Area Chart. …
- Stacked Bar Chart. …
- Mekko Chart. …
- Pie Chart. …
- Scatter Plot Chart. …
- Bubble Chart.
- Step 1: Description. What kind of graph (line graph, bar chart, pie chart) is it? What do the title, key, axes, labels, sectors tell you? …
- Step 2: Interpretation. What are the reasons for changes/ differences you described? …
- Step 3: Conclusion. What do the results tell you about the topic?
A graph is a chart that shows the mathematical relationship between varied data sets by plotting horizontal (X-axis) and vertical (Y-axis). A chart represents information as a diagram, table, or graph. It comprises various methods for presenting large information.
Graphs and charts are effective visual tools because they present information quickly and easily. It is not surprising then, that graphs are commonly used by print and electronic media. Sometimes, data can be better understood when presented by a graph than by a table because the graph can reveal a trend or comparison.
To graph an equation using the slope and y-intercept, 1) Write the equation in the form y = mx + b to find the slope m and the y-intercept (0, b). 2) Next, plot the y-intercept. 3) From the y-intercept, move up or down and left or right, depending on whether the slope is positive or negative.
For example, in a graph representing a cake recipe, each vertex is a different step in the recipe and the edges represent the relation between these steps. You can put the cake in the oven only after mixing the ingredients; therefore, there is a directed edge from the mixing to the baking step.
A complete graph is a graph that has an edge between every single vertex in the graph; we represent a complete graph with n vertices using the symbol Kn. Therefore, the first example is the complete graph K7, and the second example isn’t a complete graph at all.
It is made up of lines and points, and is comprised of the following basic parts: the axes, the points and their coordinates, the four areas that the axes created called quadrants, and the plane where the axes are laid out, called the cartesian plane.
A graph with only vertices and no edges is known as an edgeless graph. The graph with no vertices and no edges is sometimes called the null graph or empty graph, but the terminology is not consistent and not all mathematicians allow this object.
What are tables and graphs? Tables and graphs are visual representations. They are used to organise information to show patterns and relationships. A graph shows this information by representing it as a shape. Researchers and scientists often use tables and graphs to report findings from their research.
To draw a line graph, first draw a horizontal and a vertical axis. Age should be plotted on the horizontal axis because it is independent. Height should be plotted on the vertical axis. Then look for the given data and plot a point for each pair of values.
How to read it. First, look at the axes to understand what the chart is showing. Then examine the chart to see the values of the points in the lines. Follow the lines and see if there are any trends, sudden rises or falls, repeating patterns, or places where lines cross each other.
In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges).
Use the vertical line test to determine whether or not a graph represents a function. If a vertical line is moved across the graph and, at any time, touches the graph at only one point, then the graph is a function. If the vertical line touches the graph at more than one point, then the graph is not a function.
Other types of graphs
- Null Graph: A graph that does not have edges.
- Simple graph: A graph that is undirected and does not have any loops or multiple edges.
- Multigraph: A graph with multiple edges between the same set of vertices. …
- Connected graph: A graph where any two vertices are connected by a path.
Inspect the graph to see if any vertical line drawn would intersect the curve more than once. If there is any such line, the graph does not represent a function. If no vertical line can intersect the curve more than once, the graph does represent a function.
Formal definition
Given a graph where. is the set of nodes and is the set of edges, a power graph is a graph defined on the power set of power nodes connected to each other by power edges: . Hence power graphs are defined on the power set of nodes as well as on the power set of edges of the graph .
A histogram is a graph used to represent the frequency distribution of a few data points of one variable. Histograms often classify data into various “bins” or “range groups” and count how many data points belong to each of those bins.
Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.
The Quadrants
In the cartesian system, the coordinate plane is divided into four equal parts by the intersection of the x-axis (the horizontal number line) and the y-axis (the vertical number line). These four regions are called quadrants because they each represent one-quarter of the whole coordinate plane.
The poster includes:
- y-axis is the vertical axis.
- x-axis is the horizontal axis.
- Origin is the point where both the x-axis and y-axis are zero and intersect.
- Title – relating to the information being displayed on the graph.
Graphs are networks consisting of nodes connected by edges or arcs. In directed graphs, the connections between nodes have a direction, and are called arcs; in undirected graphs, the connections have no direction and are called edges.
Different types of graphs
- Line graph. Line graphs illustrate how related data changes over a specific period of time. …
- Bar graph. Bar graphs offer a simple way to compare numeric values of any kind, including inventories, group sizes and financial predictions. …
- Pictograph. …
- Histogram. …
- Area graph. …
- Scatter plot.
A basic two-dimensional graph consists of a vertical and a horizontal line that intersects at a point called origin. The horizontal line is the x axis, the vertical line is the y axis. In simple line graphs, the x and y axes are each divided into evenly spaced subdivisions that are assigned to numerical values.
Types of Graphs and Charts
Statistical Graphs (bar graph, pie graph, line graph, etc.) Exponential Graphs.
In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal.
References
Article information
Author: The Hon. Margery Christiansen
Last Updated: 08/05/2023
Views: 5933
Rating: 5 / 5 (50 voted)
Reviews: 89% of readers found this page helpful
Author information
Name: The Hon. Margery Christiansen
Birthday: 2000-07-07
Address: 5050 Breitenberg Knoll, New Robert, MI 45409
Phone: +2556892639372
Job: Investor Mining Engineer
Hobby: Sketching, Cosplaying, Glassblowing, Genealogy, Crocheting, Archery, Skateboarding
Introduction: My name is The Hon. Margery Christiansen, I am a bright, adorable, precious, inexpensive, gorgeous, comfortable, happy person who loves writing and wants to share my knowledge and understanding with you.
[ad_2]